Inactivation of the checkpoint kinase Cds1 is dependent on cyclin B-Cdc2 kinase activation at the meiotic G(2)/M-phase transition in Xenopus oocytes.

نویسندگان

  • T Gotoh
  • K Ohsumi
  • T Matsui
  • H Takisawa
  • T Kishimoto
چکیده

Checkpoint controls ensure chromosomal integrity through the cell cycle. Chk1 and Cds1/Chk2 are effector kinases in the G(2)-phase checkpoint activated by damaged or unreplicated DNA, and they prevent entry into M-phase through inhibition of cyclin B-Cdc2 kinase activation. However, little is known about how the effector kinases are regulated when the checkpoint is attenuated. Recent studies indicate that Chk1 is also involved in the physiological G(2)-phase arrest of immature Xenopus oocytes via direct phosphorylation and inhibition of Cdc25C, the activator of cyclin B-Cdc2 kinase. Bearing in mind the overlapping functions of Chk1 and Cds1, here we have studied the involvement of Xenopus Cds1 (XCds1) in the G(2)/M-phase transition of immature oocytes and the regulation of its activity during this period. Protein levels of XCds1 remained constant throughout oocyte maturation and early embryonic development. The levels of XCds1 kinase activity were high in immature oocytes and decreased at the meiotic G(2)/M-phase transition. Consistently, when overexpressed in immature oocytes, wild-type, but not kinase-deficient, XCds1 significantly delayed entry into M-phase after progesterone treatment. The inactivation of XCds1 depended on the activation of cyclin B-Cdc2 kinase, but not MAP kinase. Although XCds1 was not directly inactivated by cyclin B-Cdc2 kinase in vitro, XCds1 was inactivated by overexpression of cyclin B, which induces the activation of cyclin B-Cdc2 kinase without progesterone. Thus, the present study is the first indication of Cds1 activity in cells that are physiologically arrested at G(2)-phase, and of its downregulation at entry into M-phase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Cdc2/Cyclin B Activation in Xenopus Egg Extracts via Inhibitory Phosphorylation of Cdc25C Phosphatase by Ca2 /Calmodium-dependent Kinase II

Activation of Cdc2/cyclin B kinase and entry into mitosis requires dephosphorylation of inhibitory sites on Cdc2 by Cdc25 phosphatase. In vertebrates, Cdc25C is inhibited by phosphorylation at a single site targeted by the checkpoint kinases Chk1 and Cds1/Chk2 in response to DNA damage or replication arrest. In Xenopus early embryos, the inhibitory site on Cdc25C (S287) is also phosphorylated b...

متن کامل

A novel p34(cdc2)-binding and activating protein that is necessary and sufficient to trigger G(2)/M progression in Xenopus oocytes.

The activation of maturation-promoting factor (MPF) is required for G(2)/M progression in eukaryotic cells. Xenopus oocytes are arrested in G(2) and are induced to enter M phase of meiosis by progesterone stimulation. This process is known as meiotic maturation and requires the translation of specific maternal mRNAs stored in the oocytes. We have used an expression cloning strategy to functiona...

متن کامل

Regulation of Cdc25C by ERK-MAP Kinases during the G2/M Transition

Induction of G(2)/M phase transition in mitotic and meiotic cell cycles requires activation by phosphorylation of the protein phosphatase Cdc25. Although Cdc2/cyclin B and polo-like kinase (PLK) can phosphorylate and activate Cdc25 in vitro, phosphorylation by these two kinases is insufficient to account for Cdc25 activation during M phase induction. Here we demonstrate that p42 MAP kinase (MAP...

متن کامل

A critical balance between Cyclin B synthesis and Myt1 activity controls meiosis entry in Xenopus oocytes.

In fully grown oocytes, meiosis is arrested at first prophase until species-specific initiation signals trigger maturation. Meiotic resumption universally involves early activation of M phase-promoting factor (Cdc2 kinase-Cyclin B complex, MPF) by dephosphorylation of the inhibitory Thr14/Tyr15 sites of Cdc2. However, underlying mechanisms vary. In Xenopus oocytes, deciphering the intervening c...

متن کامل

Mitotic effects of a constitutively active mutant of the Xenopus polo-like kinase Plx1.

During mitosis the Xenopus polo-like kinase 1 (Plx1) plays key roles in the activation of Cdc25C, in spindle assembly, and in cyclin B degradation. Previous work has shown that the activation of Plx1 requires phosphorylation on serine and threonine residues. In the present work, we demonstrate that replacement of Ser-128 or Thr-201 with a negatively charged aspartic acid residue (S128D or T201D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 114 Pt 18  شماره 

صفحات  -

تاریخ انتشار 2001